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A Study of Subharmonic Injection
Locking for Local Oscillators

Xiangdong Zhang, Xuesong Zhou, Student Member, IEEE, Boris
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Abstract—The analysis of a subharmonic injection locked local
oscillator introduced here is based on a general nonlinear input-
output model for the subharmonic synchronized oscillator. The
results show the nth-order subharmonic injection locking oscil-
lator is locked primarily by the nth harmonic output of injected
signal that is generated by the current-voltage nonlinearity of the
active device. The measurement of subharmonic injection locking
range, at factors of 1/2, 1/3, and 1/4, of a MESFET DRO verified
these results.

I. INTRODUCTION

HE directly modulated fiber-optic link is limited in
bandwidth, and subharmonic injection locking has

been demonstrated as a practical technique for optical -

synchronization of remotely located oscillators at millimeter-
wave frequencies [1], [2]. Therefore, the study of the nonlinear
characteristics of solid state devices and the effect of oscillator
circuit topology on the subharmonic injection locking figures
of merit is critical in establishing an efficient synchronization
method.

The nonlinear model for injection locking oscillator based
on the Van der Pol’s representation is well known [3]. How-
ever, this representation is not easily implemented for mi-
crowave oscillators because of the one-port topology and the
small perturbation signal assumption. To solve this problem,
Daryoush ef al. [2], [4] used a general nonlinear model
to analyze the subharmonic injection locking range of a
microwave oscillator in terms of the nonlinear current-voltage
relationship of an active device. This model differs from the
Van der Pol mathematical representation in that Daryoush uses
a two-port model that is more practical and has the capability
to handle large injection signal levels.

This letter expands on this approach in that we have con-
sidered the contribution from higher order nonlinearities and
derived a general expression to predict the subharmonic injec-
tion locking range. We prove analytically that the phenomena
for the nth-order subharmonic injection locking process are
explained as follows: 1) the nonlinear device generates the
nth harmonic response of injected signal; 2) this signal locks
the free-running oscillator similar to the fundamental injection
locking. By taking advantage of this explanation, we can
design local oscillators with good injection locking range by
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Fig. 1. Conceptual diagram model of subharmonically synchronized

oscillator,

optimizing the multiplication factor of the nonlinear active
device.

II. SUBHARMONIC INJECTION LOCKING—ANALYSIS

The nonlinear circuit of oscillator, depicted in Fig. 1, is
modeled as a combination of a pure nonlinear network f(e)
and a pure linear feedback network H(D) [2]. A linear single
tuned network H(D) can be expressed as approximately

H(D) = — %0

= 0 1
1+j2Qﬁ—;J M

where () is the quality factor, and Aw is the frequency
deviation form the resonating frequency wy of feedback circuit.
Clearly, it is desirable that the output of this network, eg, be
a sinusoidal signal. When the signal e; is injected, the input
signal e for nonlinear network is

E B .o
e=ey+e = E(e]‘”t + e—jwt) + —2—63?t, 2

where w = nwyy; is the synchronized frequency after injection
locking, and wjy,; is the injection frequency, Phasor E;, the
injected signal, is represented by the amplitude E; and phase 6,
n is an integer for the subharmonic factor, £ is the oscillation
signal’s amplitude at input port. The output of the oscillator
can be expanded in a Fourier Series:

u=f(e)= Y Une™a". 3)

m=—00

To simplify the analysis, f(e) is expressed approximately by
0 N
u= f(e)= Zaie‘, 4)
=1

where «, is considered to be real for simplicity. Substituting
(4) into (3), for subharmonic {injection at a factor of n, we
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Fig. 2. Oscillator output spectra. (a) Spectra that is used to measure nonlin-
earity using nth harmonic response. (b) Spectra of unlocked oscillator using
subharmonic injection.

have an output signal U, at the oscillation frequency nwin;:
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where N = 27 +2k+ 1 and M = 2m + 2p + n. The
first term is the oscillation signal amplitude U4, the second
term represents the response Uoutn of injected signal F;
when it goes through the nonlinear network together with the
oscillation signal F. The (5) can be simplified as follows:

Un = Uout + Uoutn. (6)

The subharmonic injection locking range can be expressed
in terms of ) and wq by using (1) and letting n¢ = +x/n [2]:

~ wo Uoutn UJO Poutn
1~ - o
" 2Q Usu 2Q FPout

Clearly, (7) is the same as Alder’s expression for a fundamen-
tal injection locking range, when the signal Ugy, interacts
with the free-running oscillator like an injected fundamental
locking signal. Therefore, the subharmonic injection locking
process here is identical with that already explained in the
introduction.
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III. SUBHARMONIC INJECTION
LOCKING—EXPERIMENT VERIFICATION

For verification of this analysis, a 5-GHz DRO was designed
and fabricated. This oscillator consists of a two-stage low-
noise MESFET amplifier and a dielectric resonator between
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Fig. 3. Measured and calculated injection locking range ( 7 ) at a subhar-
monic factor n=2, 3, 4, where the calculation for Model #1 represents the
calculated results with (7), and the calculation for Model #2 represents the
predicted results with the unlocked spectra.

the input and output transmission lines as linear feedback
network, layout details of which are discussed in Berceli et
al. {4]. The output power of the free-running DRO oscillator
is 15 dkBm, and the phase noise is about —61 dkBc/Hz, —80
dBc/Hz, and —90 dBc/Hz at 10 KHz, 50 KHz and 100 KHz
offset carrier frequency, respectively.

For prediction of the locking range, P,ut, was measured
according to the following procedure: the slave oscillator
was injection locked at the frequency wg by a very strong
fundamental signal so that no other signal can significantly

‘influence the oscillation frequency; then an injection signal

was injected at frequency winj close to the nth subharmonic
of wy. As shown in Fig. 2(a), the harmonic response of the
injected signal P,yican be measured. Because the oscillation
signal £ remains constant in the second term of (5) while the
injection signal changes, P, can be expressed in terms of
the injection power P,,; in such a power series as

P =p? Z B P, ®)

where (3, is directly traceable to «, by use of (5). By
measuring FPouern at a different P;.

The first few terms of S3,, can be fitted. Then the locking
range can be predicted in terms of the injected power. Fig. 3
shows the comparison between the measured and predicted
locking range at subharmonic factors of 1/2, 1/3, and 1/4,
where a good match was obtained between two results.

On the basis of the physical explanation of subharmonic
injection locking process, other classical formulas for funda-
mental injection locking, such as Armand’s [5] and Stover’s
{6] method, can be used to predict the subharmonic injection
locking range. By observing the sidebands generated by the
unlocked oscillator which is shown in Fig. 2(b), the injection
locking ranges were calculated through Armand’s and Stover’s
approaches. Both approaches lead to the same results in our
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experiment. The calculated locking ranges again agree well
with the measured results, as shown in Fig. 3.

IV. CONCLUSION

Because comparisons in Fig. 3 verify the results in (7),
the subharmonic locking range can be easily predicted if
the multiplication property of a nonlinear network is known.
Also, a subharmonically synchronized local oscillator capable
of synchronization to a large subharmonic factor with the
optimum locking range can be built, if a nonlinear circuit
topology having an optimum multiplication property for a
signal at a subharmonic factor is designed. The noise behavior
of subharmonically locked LO’s is under consideration and
will be discussed in a separate paper [7].
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